ROTATIONAL SYMMETRY OF SOLUTIONS OF A NONLINEAR ELLIPTIC EQUATION IN A BALL

Matthias Birkner, José A. López-Mimbela and
Anton Wakolbinger
Comunicación Técnica No I-02-26/08-11-2002
(PE/CIMAT)

ROTATIONAL SYMMETRY OF SOLUTIONS OF A NONLINEAR ELLIPTIC EQUATION IN A BALL

Matthias Birkner
José A. López-Mimbela

Anton Wakolbinger

Abstract

We extend the method of moving planes, which is well known in the Laplacian case, to study symmetry of positive solutions of the elliptic equation $-(-\Delta)^{\alpha / 2} u(x)+F(u(x))=0, x \in B, u=0$ in ∂B. Essential tools (like Hopf's boundary lemma) are carried over to fractional powers of the Laplacian. The radial symmetry of positive solutions of the above equation is studied in the case of a ball $B \subset \mathbb{R}^{d}$ and a positive non-decreasing function F.

1 Introduction

Let $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be nondecreasing, not identically constant. Let $u: \mathbb{R}^{d} \rightarrow$ \mathbb{R}_{+}be a nonnegative bounded solution of

$$
\begin{equation*}
\Delta_{\alpha} u+F(u)=0, x \in B_{1}(0), \quad u \equiv 0 \text { in } B_{1}(0)^{c}, \tag{1.1}
\end{equation*}
$$

i.e., for all x in the unit ball we have

$$
\begin{equation*}
u(x)=\int_{0}^{\infty}\left(T_{s} F(u)\right)(x) d s=\int_{B_{1}(0)} G_{\alpha}(x, y) F(u(y)) d y \tag{1.2}
\end{equation*}
$$

Here $\alpha \in(0,2), \Delta_{\alpha}=-(-\Delta)^{(\alpha / 2)}$ is the generator of the symmetric α-stable process $\left(X_{t}\right)$, and $G_{\alpha}(x, y)$ is the Green's function for the unit ball of $\left(X_{t}\right)$. Without loss of generality we assume that $u \not \equiv 0$. Our aim here is to show that
u is rotationally symmetric about the origin.

Our approach is based on the celebrated method of moving planes, a device that goes back to Alexandrov [1] and has by now a venerable history in the study of symmetries of solutions of pde's, see also [3], [4], [5], [6] and [8]. The idea is as follows: Choose any direction in \mathbb{R}^{d}, wlog the x_{1}-direction, and

Figure 1: The moving planes method.
show that u is mirror symmmetric with respect to the hyperplane through the origin with this given direction as a normal vector. In order to achieve this let us define for $\lambda \in(-1,1)$

$$
T_{\lambda}:=\left\{x \in \mathbb{R}^{d}: x_{1}=\lambda\right\}, \quad \Sigma_{\lambda}:=\left\{x \in \mathbb{R}^{d}: x_{1}<\lambda\right\}
$$

and for $x \in \mathbb{R}^{d}$ let $x^{\lambda}:=\left(2 \lambda-x_{1}, x_{2}, \ldots, x_{d}\right)$ be the image under reflection along T_{λ}; see Figure 1.

Define the set Λ by

$$
\begin{equation*}
\Lambda:=\left\{\lambda \in(-1,0): u\left(x^{\lambda}\right) \geq u(x) \forall x \in \Sigma_{\lambda}, \frac{\partial}{\partial x_{1}} u(x)>0 \forall x \in T_{\lambda} \cap B_{1}(0)\right\} . \tag{1.4}
\end{equation*}
$$

Observe that by the minimum principle we have $u\left(x^{\lambda}\right)>u(x)$ for $x \in \Sigma_{\lambda} \cap$ $B_{1}(0)$ and $\lambda \in \Lambda$, i.e., $\lambda \in \Lambda$ means that reflection along T_{λ} (strictly) increases
the value of u. In Section 3 we prove that

$$
\begin{equation*}
\sup \Lambda=0 \tag{1.5}
\end{equation*}
$$

so that by continuity $u\left(-x_{1}, x_{2} \ldots, x_{d}\right) \geq u\left(x_{1}, x_{2} \ldots, x_{d}\right)$ whenever $x_{1} \leq 0$. By considering $\lambda>0$ and working in the opposite direction we can then conclude the reversed inequality and hence obtain the desired symmetry.

2 Some preparatory lemmas

Lemma 2.1 A bounded solution u of (1.2) satisfies $u \in C\left(\mathbb{R}^{d}\right) \cap C^{\infty}\left(B_{1}(0)\right)$.
Proof Use the explicit form of Green's kernel.
Lemma 2.2 (Minimum principle) Let $D \subset \mathbb{R}^{d}$ be a bounded domain. Suppose $u: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$is continuous, $\Delta_{\alpha} u \leq 0$ on D, and satisfies $u \equiv 0$ on D^{c}. Then either $u \equiv 0$ or $u>0$ on D.

Proof Let $D_{\varepsilon}:=\{x \in D: u(x)>\varepsilon\}$. By continuity D_{ε} is open. Assume that $D_{\varepsilon} \neq \emptyset$ for some $\varepsilon>0$. Let $\left(X_{t}\right)$ be the α-stable process, and $\tau:=$ $\inf \left\{s: X_{s} \notin D\right\}$ the hitting time of D^{c}. Then $M_{t}:=u\left(X_{t \wedge \tau}\right)-u\left(X_{0}\right)-$ $\int_{0}^{t \wedge \tau} \Delta_{\alpha} u\left(X_{s}\right) d s$ is a \mathbf{P}_{x}-martingale for each $x \in D$. Let furthermore $\tau^{\prime}:=$ $\inf \left\{s: X_{s} \in D_{\varepsilon}\right\}$. For each $x \in D$ we have $\mathbb{E}_{x} M_{\tau^{\prime}}=0$, or

$$
\begin{aligned}
u(x) & =\mathbb{E}_{x}\left[u\left(X_{\tau^{\prime} \wedge \tau}\right)\right]+\mathbb{E}_{x}\left[\int_{0}^{\tau^{\prime} \wedge \tau}\left(-\Delta_{\alpha} u\right)\left(X_{s}\right) d s\right] \\
& \geq \mathbb{E}_{x}\left[u\left(X_{\tau^{\prime} \wedge \tau}\right)\right] \geq \varepsilon \mathbf{P}_{x}\left(\tau^{\prime}<\tau\right)>0
\end{aligned}
$$

because $\left(X_{t}\right)$ hits any open subset of D with positive probability before exiting from D.

We will have occasion to consider the behaviour of u at the boundary of the ball. In this respect, the following lemma is helpful:

Lemma 2.3 (Hopf's α-stable boundary lemma) Let $D \subset \mathbb{R}^{d}$ be open, $u: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$continuous with $u \equiv 0$ on $D^{c}, \Delta_{\alpha} u \leq 0$ on D. Let $x_{0} \in \partial D$

Figure 2: The Hopf's boundary lemma.
satisfy an interior sphere condition, i.e. there exists a ball $B_{\delta}\left(x_{1}\right) \subset D$ with $\overline{B_{\delta}\left(x_{1}\right)} \cap D^{c}=\left\{x_{0}\right\}$, and let ν be an outward pointing unit vector at x_{0}. Then

$$
\frac{\partial}{\partial \nu} u\left(x_{0}\right)<0
$$

(in fact, $\left.\lim _{\varepsilon \backslash 0}\left(u\left(x_{0}\right)-u\left(x_{0}-\varepsilon \nu\right)\right) / \varepsilon=-\infty\right)$.
Proof Because of the interior sphere condition at x_{0} we can find a ball $B_{\delta}\left(x_{1}\right) \subset D$ such that $\overline{B_{\delta}\left(x_{1}\right)} \cap D^{c}=\left\{x_{0}\right\}$ and also $\widetilde{B} \subset D$, where \widetilde{B} is the "left half" of a spherical shell around x_{1} with interior radius δ and exterior radius $\delta^{\prime}>\delta$; see Fig. 2. Observe that $u>0$ in D by Lemma 2.2, in particular $\inf _{\widetilde{B}} u>0$ because \widetilde{B} is compact and u continuous. Let $\tau:=\inf \left\{t: X_{t} \notin B_{\delta}\left(x_{1}\right)\right\}$. Then

$$
u(x)=\mathbb{E}_{x}\left[u\left(X_{\tau}\right)-\int_{0}^{\tau}\left(\Delta_{\alpha} u\right)\left(X_{t}\right) d t\right] \geq \mathbb{E}_{x} u\left(X_{\tau}\right)
$$

for $x \in B_{\delta}\left(x_{1}\right)$. Take $x=x_{1}-\varepsilon \nu$ with $\varepsilon>0$ small enough, and denote by γ the angle between $\overline{x_{1} x_{0}}$ and $\overline{x x_{0}}$. Then $\gamma \in(-\pi / 2, \pi / 2)$ because ν is an outward pointing vector, hence $\cos \gamma>0$. The cosine theorem gives $\left|x-x_{1}\right|^{2}=\delta^{2}+\varepsilon^{2}-2 \delta \varepsilon \cos \gamma$. Using the explicit form of the Poisson kernel
for the complement of a ball (see e.g. [2]) we can estimate

$$
\begin{aligned}
u(x) & \geq \mathbb{E}_{x} u\left(X_{\tau}\right) \geq \int_{\widetilde{B}} P(x, y) u(y) d y \\
& \geq\left(\inf _{\widetilde{B}} u\right) C_{\alpha, d} \int_{\tilde{B}}\left(\frac{\delta^{2}-\left|x-x_{1}\right|^{2}}{\left|y-x_{1}\right|^{2}-\delta^{2}}\right)^{\alpha / 2}|x-y|^{-d} d y \\
& \geq C\left(\delta^{2}-\left|x-x_{1}\right|^{2}\right)^{\alpha / 2} \geq C^{\prime} \varepsilon^{\alpha / 2}
\end{aligned}
$$

Thus we see that $\lim \sup _{\varepsilon \backslash 0}\left(u\left(x_{0}\right)-u\left(x_{0}-\varepsilon \nu\right)\right) / \varepsilon=-\infty$.
Lemma 2.4 Let $w: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be continuous, bounded with $w \geq 0$ on Σ_{0}, $w\left(x^{0}\right)=-w(x)$. Let $x_{*} \in T_{0}$ be such that there exists a $\delta>0$ with $\Delta_{\alpha} w \leq 0$ on $B_{\delta}\left(x_{*}\right) \cap \Sigma_{0}$. Then either

$$
w \equiv 0, \quad \text { or } \quad w>0 \text { on } B_{\delta}\left(x_{*}\right) \cap \Sigma_{0} \text { and } \frac{\partial}{\partial x_{1}} w\left(x_{*}\right)<0 .
$$

Proof Assume $w \not \equiv 0$. Let $x \in B_{\delta}\left(x_{*}\right) \cap \Sigma_{0}$. If $w(x)=0$ we would have (see e.g. [2])

$$
\Delta_{\alpha} w(x)=c_{\alpha, d} \mathrm{PV} \int_{\mathbb{R}^{d}} \frac{w(x+y)-0}{|y|^{d+\alpha}} d y>0
$$

by the non-triviality and symmetry of w in contradiction to the assumption.
To show that the derivative is non-zero choose $\delta^{\prime}>0$ such that

$$
\sup _{z \in \Sigma_{0} \backslash B_{\delta^{\prime}}\left(x_{*}\right)} w(z)>0 .
$$

Let $\tau:=\inf \left\{t: X_{t} \notin B_{\delta^{\prime}}\left(x_{*}\right)\right\}$ where $\left(X_{t}\right)$ is the symmetric α-stable process. Define $v(x):=\mathbb{E}_{x} w\left(X_{\tau}\right), \widetilde{v}(x):=\mathbb{E}_{x} \int_{0}^{\tau}\left(-\Delta_{\alpha} w\right)\left(X_{s}\right) d s$. Observe that

$$
\Delta_{\alpha} v=0 \text { in } B_{\delta^{\prime}}\left(x_{*}\right) \text { and } v=w \text { in } \mathbb{R}^{d} \backslash B_{\delta^{\prime}}\left(x_{*}\right)
$$

$$
\Delta_{\alpha} \widetilde{v}=\Delta_{\alpha} w \text { in } B_{\delta^{\prime}}\left(x_{*}\right) \text { and } \widetilde{v}=0 \text { in } \mathbb{R}^{d} \backslash B_{\delta^{\prime}}\left(x_{*}\right) .
$$

Uniqueness of the Dirichlet problem for Δ_{α} in $B_{\delta^{\prime}}\left(x_{*}\right)$ thus gives $w=v+\widetilde{v}$. We have $v(x)=\int_{\left|y-x_{*}\right|>\delta^{\prime}} P(x, y) w(y) d y$ for $x \in B_{\delta^{\prime}}\left(x_{*}\right)$, where the Poisson
kernel is given by (see e.g. [2], formula (2.2))

$$
P(x, y)=C_{\alpha, d}\left[\frac{\delta^{\prime 2}-\left|x-x_{*}\right|^{2}}{\left|y-x_{*}\right|^{2}-\delta^{\prime 2}}\right]^{\alpha / 2}|x-y|^{-d}, \quad x \in B_{\delta^{\prime}}\left(x_{*}\right), y \notin B_{\delta^{\prime}}\left(x_{*}\right) .
$$

One checks that $\frac{\partial}{\partial x_{1}} P\left(x_{*}, y\right)<0$ for $y \in \Sigma_{0}$ and $\frac{\partial}{\partial x_{1}} P\left(x_{*}, y\right)>0$ for $y \in-\Sigma_{0}$. The interchange of integration and differentation is justified because w is bounded, so we can compute

$$
\frac{\partial}{\partial x_{1}} v\left(x_{*}\right)=\int_{\left|y-x_{*}\right|>\delta^{\prime}} \frac{\partial}{\partial x_{1}} P\left(x_{*}, y\right) w(y) d y<0 .
$$

Furthermore for $x \in B_{\delta^{\prime}}\left(x_{*}\right)$

$$
\widetilde{v}(x)=\int_{B_{\delta^{\prime}}\left(x_{*}\right)} G(x, y)\left(-\Delta_{\alpha} w\right)(y) d y
$$

where the Green kernel for $B_{\delta^{\prime}}\left(x_{*}\right)$ is given by (see e.g. [2], formula (2.3), but also the remarks section)

$$
\begin{equation*}
G(x, y)=c_{\alpha, d}(|x-y|)^{\alpha-d} \int_{0}^{w_{\delta^{\prime}}(x, y)} \frac{r^{\alpha / 2-1}}{(r+1)^{d / 2}} d r \tag{2.6}
\end{equation*}
$$

where $w_{\delta^{\prime}}(x, y)=\left(\delta^{\prime 2}-\left|x-x_{*}\right|^{2}\right)\left(\delta^{\prime 2}-\left|y-x_{*}\right|^{2}\right) /|x-y|^{2}$. Inspection shows that for $x, y \in B_{\delta^{\prime}}\left(x_{*}\right) \cap \Sigma_{0}$ we have $G(x, y) \geq G\left(x, y^{0}\right)$, hence $\widetilde{v} \geq 0$ in $B_{\delta^{\prime}}\left(x_{*}\right) \cap \Sigma_{0}$ and by symmetry $\widetilde{v} \leq 0$ in $B_{\delta^{\prime}}\left(x_{*}\right) \cap\left(-\Sigma_{0}\right)$. We conclude that $\left(\partial / \partial x_{1}\right) \widetilde{v}\left(x_{*}\right) \leq 0$ and thus $\frac{\partial w\left(x_{*}\right)}{\partial x_{1}} \leq \frac{\partial v\left(x_{*}\right)}{\partial x_{1}}<0$.

3 Proof of (1.5)

We proceed in three steps and show that

1. Λ is not empty,
2. Λ is open, more precisely for $\lambda \in \Lambda$ there exists $\varepsilon>0$ such that $[\lambda, \lambda+\varepsilon) \subset \Lambda$.
3. From 1. and 2 . we conclude that $\Lambda=\left(-1, \lambda_{\max }\right)$. We finally show that $\lambda_{\max }=0$.

Step 1. Obviously $(-1,0, \ldots, 0)$ is an outward pointing direction for each $x \in \partial B_{1}(0) \cap \Sigma_{-1 / 2}$. By the boundary lemma and the fact that $\left(\partial / \partial x_{1}\right) u$ is continuous in $B_{1}(0)$ there is an open neighborhood D of $\partial B_{1}(0) \cap \Sigma_{-1 / 2}$ such that $\left(\partial / \partial x_{1}\right) u>0$ on $D \cap B_{1}(0)$. Choose $\varepsilon>0$ so small that $\Sigma_{-1+\varepsilon} \cap B_{1}(0) \subset$ D. Then $-1+\varepsilon / 2 \in \Lambda$.

Step 2. We argue by contradiction. Assume there was $\lambda_{*} \in \Lambda$ and also a sequence $\left(\lambda_{n}\right) \subset(-1,0) \backslash \Lambda$ with $\lambda_{n} \searrow \lambda_{*}$. From the definition of Λ, possibly passing to a suitable subsequence (which we again would denote by $\left(\lambda_{n}\right)$) we can always arrive at one of the following possibilities:
a) There exists a sequence $\left(x_{n}\right) \subset B_{1}(0), x_{n} \in \Sigma_{\lambda_{n}}$, with $x_{n} \rightarrow x_{*} \in \overline{B_{1}(0)}$ and $u\left(x_{n}\right) \geq u\left(x_{n}^{\lambda_{n}}\right)$ for all n, or
b) There exists a sequence $\left(x_{n}\right) \subset B_{1}(0), x_{n} \in T_{\lambda_{n}}$, with $x_{n} \rightarrow x_{*} \in \overline{B_{1}(0)}$ and $\left(\partial / \partial x_{1}\right) u\left(x_{n}\right) \leq 0$ for all n.

Assume a) was true. We cannot have $x_{*} \in \Sigma_{\lambda_{*}}$ because u is continuous and $u\left(x^{\lambda_{*}}\right)>u(x)$ for $x \in \Sigma_{\lambda_{*}}$ by the above remark. Hence $x_{*} \in T_{\lambda_{*}} \cap \overline{B_{1}(0)}$. But then we have $\left(\partial / \partial x_{1}\right) u\left(x_{*}\right)=\lim _{n \rightarrow \infty}\left(u\left(x_{n}^{\lambda_{n}}\right)-u\left(x_{n}\right)\right) /\left(2 \mathrm{~d}\left(x_{n}, T_{\lambda_{n}}\right)\right) \leq 0$. By Hopf's boundary lemma, this forces x_{*} to be away from $\partial B_{1}(0)$, but then we obtain a contradiction to $\lambda_{*} \in \Lambda$.

If b) was true we would again find a point $x_{*} \in T_{\lambda_{*}} \cap \overline{B_{1}(0)}$ with $\frac{\partial}{\partial x_{1}} u\left(x_{*}\right) \leq$ 0 and arrive at a contradiction.

Step 3. From the preceding steps we know that $\Lambda=\left(-1, \lambda_{\max }\right)$. If $u\left(x^{\lambda_{\max }}\right) \equiv$ $u(x)$ for $x \in \Sigma_{\lambda_{\max }}$ then we have found a symmetry center. As u is continuous, $u=0$ on $\partial B_{1}(0)$ and strictly positive inside $B_{1}(0)$ this can only be true for $\lambda_{\max }=0$. Indeed, if $\lambda_{\max }<0$ then by continuity we would have $u(x) \leq$ $u\left(x^{\lambda_{\max }}\right)$ for $x \in \Sigma_{\lambda_{\max }}$, but with $u(x) \not \equiv u\left(x^{\lambda_{\max }}\right)$. Define $w(x):=u\left(x^{\lambda_{\max }}\right)-$ $u(x)$. Observe that w is continuous and bounded, non-negative in $\Sigma_{\lambda_{\max }}$ and $w\left(x^{\lambda_{\max }}\right)=-w(x)$. For $x \in \Sigma_{\lambda_{\max }} \cap B_{1}(0)$ we have

$$
\Delta_{\alpha} w(x)=\left(\Delta_{\alpha}\right) u\left(x^{\lambda_{\max }}\right)-\left(\Delta_{\alpha}\right) u(x)=-\left[F\left(u\left(x^{\lambda_{\max }}\right)\right)-F(u(x))\right] \leq 0
$$

and we infer from Lemma 2.4 that $\left(\partial / \partial x_{1}\right) w(x)<0$ for all $x \in T_{\lambda_{\max }} \cap B_{1}(0)$. In conclusion, $\lambda_{\max }<0$ implies $\lambda_{\max } \in \Lambda$ which by Step 2 forces $\sup \Lambda>$ $\lambda_{\max }$. This is a contradiction.
Acknowledgement J.A. López Mimbela appreciates the kind hospitality of Frankfurt University during his visit in summer 2002, and thanks CONACYT (Mexico) and DAAD (Germany) for support.

References

[1] A.D. Alexandrov (1956-1958). Uniqueness theorems for surfaces in the large I-V. Vestnik Leningrad Univ. 11 No. 19, 5-17 (1956); 12 No. 7, 15-44 (1957); 13 No. 7, 14-26 (1958); 13 No. 13, 27-34 (1958); 13 No. 19, 5-8 (1958). English transl. in Am. Math. Soc. Transl. 21, 341-354, 354-388, 389-403, 403-411, 412-416 (1962).
[2] K. Bogdan, T. Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 (2000), no. 2, 293-335.
[3] W.X. Chen and C. Li (1991). Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, no. 3, 615-622.
[4] B. Gidas (1980). Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in Nonlinear Partial Differential Equations in Engineering and Applied Science, Eds. R. Sternberg, A. Kalinowski and J. Papadakis, Proc. Conf. Kingston, R.I 1979. Lect. Notes on Pure Appl. Math. 54, Decker, New York, 255-273.
[5] B. Gidas, W.M. Ni, and L. Nirenberg (1981). Symmetry of positive solutions of nonlinear elliptic equations in \mathbf{R}^{n}, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud. 7, 369-402.
[6] B. Gidas and J. Spruck (1981). Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, no. 4, 525-598.
[7] N.S. Landkof (1972). Foundations of modern potential theory. Springer-Verlag, Berlin.
[8] J. Serrin (1971). A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43, 304-318.

Matthias Birkner

FB Mathematik, J.W. Goethe Universität D-60054 Frankfurt am Main, Germany.
J. Alfredo López-Mimbela

Centro de Investigación en Matemáticas Apartado Postal 402
36000 Guanajuato, México.

Anton Wakolbinger
FB Mathematik, J.W. Goethe Universität D-60054 Frankfurt am Main, Germany.

